The Future of Tire Research

Performance Assessment from the Tire's Point of View

Ron Kennedy Managing Director Center for Tire Research (CenTiRe)

Road Profile Users Group Conference November 2, 2016

Road and Tire Shared Objectives

Both the road and tire industries share common goals for performance, but with different means and roles :

- Safety
 - Traction and braking
 - Handling
- Durability
 - Functional through expected lifetime (and beyond)
- Quiet
 - Environment
 - Vehicle passengers
- Comfort
 - Smooth ride
- Energy efficiency and environmental impact
 - Fuel economy
 - Green materials, manufacturing, and operations

Customers Requiring Tire Assessments

Tire performance assessment is required or requested by a number of different groups:

- Government agencies
 - Minimum performance requirements
 - Tire labeling
- OE Vehicle manufacturers
 - Tire performance specifications to meet vehicle requirements
- Consumer magazines and online websites
 - Published ratings and stories on performance
- Internal tire company sales and marketing departments
 - Desired performance for market positioning and sales
- Internal tire company QA department
 - Minimum performance requirements (greater than government requirements)

How Is Tire Performance Assessed?

The tire industry uses various means to assess the performance of their products

- Outdoor Testing
 - Single tire or on-vehicle
 - Specified special pavement surfaces and conditions
 - Dry, wet, snow, ice
- Indoor Testing
 - Single tire
 - Rotating drum or flat belt with specified surface
 - Dry, wet, snow, ice
- Simulations
 - Single tire or on-vehicle
 - Duplicate, as closely as possible, the corresponding outdoor or indoor test

How Is Tire Performance Assessed?

- Each tire performance area has different test methods, equipment, and test surfaces
 - Some require a single test procedure, while others can be assessed in multiply ways
- Test methods are created by
 - Government agencies to support their regulations (e.g., NHTSA)
 - Industry / government organizations (e.g., ASTM, SAE, ISO)
 - OE vehicle manufacturers
 - Tire companies

How Is Tire Performance Assessed?

- There are two main methods of assessment
 - Human senses (subjective)
 - Test performed on-vehicle by a trained driver/evaluator
 - Ratings and evaluation comments
 - Used primarily for noise, ride comfort, and handling
 - Instrumentation (objective)
 - Test performed on-vehicle or in the lab
 - Measurements made by equipment such as force cells, microphones, accelerometers, GPS units, etc.
- Future direction is for more objective measurements along with, or in place of, subjective assessments

Tire Performance Assessment

Descriptions will be given for each performance area

- Safety (traction and braking)
- Durability (tread wear)
- Quiet (noise and vibration)
- Comfort (ride comfort)
- Fuel Economy (rolling resistance)

Traction and Braking

- In the USA, Europe, and some other countries wet traction is part of the government-imposed tire labeling
 - Towed trailer testing on specified surface
 - Required value may be peak or slide friction, depending on the country
 - New USA tire labeling will keep wet traction, but may report peak friction instead of slide due to impact on ABS
- OE vehicle manufacturers specify tire traction and braking performance for their vehicle development programs
 - Dry, wet, snow, and ice surfaces at specified proving ground locations
 - Dry and wet testing on both asphalt and concrete surfaces, with both peak and slide reported
 - Towed trailer test and/or on-vehicle stopping distance test
 - Vehicle acceleration testing, especially on snow and ice

Tire Traction and Braking Testing

- Surface preparation is critical, and must follow procedures defined by government agency or OE vehicle manufacturer
- Goal is to have the "same" surface from test to test so that the tires' performance can be assessed and compared
- Towed trailer test is basically the same for all required testing, based on ASTM F408, with differences being in test speed and loading conditions
 - Tests are performed at multiple speeds
 - Brake "chirps" to lock-up and hold for ~1.5 sec. to measure peak and slide

Tire Traction and Braking Testing

- On-vehicle braking test (dry, wet, snow, ice)
 - Specified initial speed and brake application
 - Measurement of deceleration vs. time and distance to stop
- On-vehicle traction / acceleration test (snow and ice)
 - Test tires at all vehicle positions or at a single position
 - Specified acceleration
 - Measure or rate slippage vs. speed

Snow traction test vehicle – single position test (Smithers)

Tire Changes to Improve Traction/Braking

- Tread compound
 - Lower hysteresis, higher grip, low temperature elasticity
- Tread pattern
 - Higher block stiffness, number of edges (slots and sipes)
- Tire construction
 - Belt layup, sidewall stiffness
- Trade-offs
 - Rolling resistance
 - Treadwear
 - Noise

All Season

Winter

Tire Tread Wear

- Part of government-imposed tire labeling (e.g., USA UTQG and EU label)
 - On-vehicle wear measured on a specified course typically public roads over a specified distance
- OE vehicle manufacturers also specify tread wear for tire development
 - On-vehicle wear measured on specified course over a specified distance
 - Course and test conditions are unique to each OEM
- Indoor drum tests are also performed
 - Simulate outdoor wear test loading
 - Some OE vehicle manufacturers accept indoor test results
- Tire manufacturers may also have their own internal tread wear test protocols (outdoor and indoor)

Tire Tread Wear Testing

- On-vehicle wear test routes are developed to represent aspects of real world driving conditions
 - Include city and highway portions distance and type depends on the test protocol
 - Attention is paid to condition and maintenance of the road surfaces
- For example, UTQG tread wear is run on a 400 mile public road course near San Angelo, Texas for a total of 7200 miles
 - Vehicle set up and tire rotations are specified
 - Wear rating given relative to standard tire (SRTT) run on the same test fleet

Tire Tread Wear

- Indoor drum tests are sometimes run
 - More efficient than outdoor tests
 - Large diameter drum (e.g., 10 foot)
 - Loads, slip angles, camber angles, speeds dynamically applied to simulate outdoor wear test
 - Medium grit surface on the drum, with powder (e.g., talc) applied to reduce rubber gumming on the drum surface
 - Wear is more aggressive than the on-vehicle test, so correlation needs to be made to outdoor test

Indoor tread wear test machine (MTS)

nvent the Futur

Tire Changes to Improve Tread Wear

- Tread compound
 - Higher abrasion resistance
 - Stiffer
- Tread pattern
 - Stiffer tread blocks
 - Slots, sipes, tie-bars
- Tire/road contact shape and pressure distribution
 - Tire geometry (e.g., tread cross-section radius)
 - Tire construction (e.g., belt layup)
- Trade-offs
 - Traction
 - Noise
 - Ride comfort

Invent the Future

Noise and Vibration

- There are two main concerns for tire noise
 - Radiated to the environment (passby noise)
 - Concern of government regulators and people living alongside highways
 - Transmitted to the vehicle driver and passengers
 - Concern of OE vehicle manufacturers and people inside the vehicles
- In the USA, there are no government regulations for tire noise and vibration
- In Europe and some other countries, radiated noise (i.e., passby noise) is part of the tire labeling requirement
 - Tested on specified pavement surface at specified conditions
 - Measured by microphone at specified location

Noise and Vibration

- OE vehicle manufacturers specify noise and vibration requirements for tires developed for their vehicles
 - Noise and vibration experienced by vehicle driver and passengers, not environmental noise
 - Two transmission paths to vehicle interior
 - Structural roughly under 400 Hz
 - Airborne roughly above 400 Hz
 - Interior noise and vibration is strongly influenced by the vehicle (i.e., the transmission path)
- Tire manufacturers also perform tire noise and vibration measurements in the lab
 - On-drum noise
 - Static and on-drum modal vibration

Noise and Vibration Testing

- On-vehicle subjective noise and vibration ratings are made by trained evaluators
 - Special road surfaces at proving grounds, or selected public roads that contain the desired road surface features (asphalt, concrete, roughness)
 - Test surfaces and procedures are specified by the OEM
 - Ratings of various noise characteristics (sounds due to surface characteristics or occurring at selected frequency ranges):
 - Impact slap
 - Boom
 - Whine
 - Howl
 - Growl
 - Sha
 - Etc.

Noise and Vibration Testing

- On-vehicle objective noise and vibration measurements are increasingly being made using accelerometers and microphones inside the vehicle
 - Special road surfaces at proving grounds, or selected public roads that contain the desired road surface features (asphalt, concrete, roughness)
 - Test surfaces and procedures are specified by the OEM
 - Analysis methods of measured noise and vibration quantities are also specified by the OEM

Aachen head binaural noise measurement system (Head Acoustics)

Road Profile Users Group Conference

Noise and Vibration Testing

- Tire noise and vibration transmission characteristics are measured by tire companies in their labs
 - Rotating drum with specified surfaces
 - Bare steel, medium grit, molded shell surface that duplicates a selected road surface

50

30 SPL

20

10^L

1000

• Microphones measure noise and force cells at the hub measure vibration force transmission

Road Profile Users Group Conference

Resonance mode-2≈ 2000Hz

Side (800lb, 40kph)

Pipe resonance \approx 1000Hz

Slick

2slots

Tire Changes to Improve Noise & Vibration

- Tread pattern
 - Multiple block sizes and arrangement (pitch sequence)
 - Slot geometry
- Tire/road contact shape and pressure distribution
 - Tire geometry (e.g., tread cross-section radius)
 - Tire construction (e.g., belt layup)
- Sidewall stiffness and damping
 - Lower stiffness and higher damping
- Trade-offs
 - Traction and tread wear

Invent the Future

Ride Comfort

- No government regulations for ride comfort
- OE vehicle manufacturers impose tire performance specifications to give desired ride feel for their vehicles
 - On-vehicle testing performed
 - Special road surfaces with desired features
 - Primarily assessed by subjective evaluations
- Tire manufacturers also perform lab tests to measure tire characteristics for impact
 - Drum test with a 10mmx10mm cleat on the surface
 - Measure forces transmitted to the hub
 - Evaluate amplitude, frequency content, and damping of the force signals

Ride Comfort Testing

- On-vehicle testing performed on special road surfaces with desired roughness or impact features
 - Expansion joints, small and large impacts, undulations, potholes, roughness levels
 - Specially constructed surfaces at proving grounds
 - Specially selected portions of public roads that contain the desired features
- Subjective ratings made by trained driver / evaluator for a number of characteristics
 - Plushness / rolling feel
 - Bounce and pitch
 - Large and small impact harshness and damping
 - Rough / coarse road isolation

Tire Changes to Improve Ride Comfort

- Tire/road contact shape and pressure distribution
 - Tire geometry (e.g., tread cross-section radius)
 - Tire construction (e.g., belt layup)
- Tread compound and pattern
 - Softer
 - Higher hystersis
- Tire stiffness and damping
 - Belt layup
 - Sidewall stiffness and hysteresis
- Trade-offs
 - Treadwear
 - Handling
 - Rolling resistance

Round leading edge better for ride comfort (*The Pneumatic Tire*, 2005)

Tire Rolling Resistance

- In Europe and some other countries, tire rolling resistance is already part of government-imposed tire labeling
- In the USA there are no direct government requirements (yet)
 - However, indirectly affected through OE vehicle manufacturers' CAFE requirements.
 - Getting tougher due to increasing NHTSA CAFE numbers and start of EPA greenhouse gas requirements
 - Tire rolling resistance will also be part of tire labeling once NHTSA releases their final-final rules
- Tire rolling resistance contributes about 4% 7% to the car or light truck fuel consumption, depending on vehicle and driving condition (highway, city)
 - Although relatively small, OE vehicle manufacturers set tire rolling resistance specs and typically hold tire manufacturers to meeting them in order to meet CAFE

Tire Rolling Resistance Testing

- Tire rolling resistance is assessed through specified indoor test procedures
 - Tests performed on rotating drum or flat belt test machines
 - Follow standards (SAE J1269, SAE J2452, ISO 28580), but test conditions can differ by surface (bare steel or medium grit), load, pressure and speed conditions
 - Government tire labeling and OE manufacturers specify which test standard and conditions to be run
 - Equation available to convert values from drum to flat surface

Drum rolling resistance test machine (TMSI)

Tire Changes to Improve Rolling Resistance

- Rubber compounds used in the tire
 - Lower hysteretic tread, sidewall, other internal components
- Tire construction
 - Belt layup, sidewall stiffness
- Tread pattern
 - Higher block stiffness
- Trade-offs
 - Traction/braking (especially wet and snow)
 - Noise
 - Ride comfort

Summary

- Pavement and tire engineers share common goals to provide the desired performance to the public and to meet applicable government regulations
- There are many tire performance areas in which the tire/road surface interaction is very important
 - Tire companies are continuing research to better understand mechanisms and develop physical models and relations (e.g., friction equation that includes macro and micro pavement texture)
- Tire manufacturers expend considerable effort to develop, test, and produce products that meet their customer's needs and desires
 - Government agencies
 - OE vehicle manufacturers
 - Buying public

